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Parameter estimation

To analyse and simulate our model, we determine the baseline parameter values from the liter-
ature that most correspond to available experimental data and biological facts. Since most of
the available parameter values from the literature are reported in daily rates, we rescaled such
parameter values by dividing each of them with d ∗ 24 hours, where d denotes the number of
days, to convert daily rates to hourly rates.

Susceptible normal cells. Uninfected normal cell proliferation rate, and the normal cell car-
rying capacity, rN = 0.00275 hr−1 and KN = 1011 cells, has been respectively taken from [1].
Since wild-type vesicular stomatitis virus can infect normal cells, the rate at which it infects
normal cells, βN , is not known precisely. However, for our modeling purpose, the hourly infec-
tion rate βN = (1.7×10−8)/24 virion−1 hr−1 of normal cells is rescaled from Friedman et al. [2].

Susceptible tumor cells. Similarly, we have taken the proliferation rate, rT = 0.003 hr−1,
and the tumor cell carrying capacity, KT = 1.47×1011 cells, from [1]. The baseline value of the
rate at which VSV infects tumor cells, βT = 0.038/24 virion−1 hr−1, has been rescaled from the
daily rate in Eftimie et al. [3]. This parameter value is within the range (5× 10−12.5, 5× 1014)
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virion−1 hr−1 defined in [1], where the authors found out that the range allows for tumor per-
sistence after the delay of 7 days prior to accumulation of the adaptive immune response. The
lysis rate of susceptible tumor cells by tumor-specific immune cells, γT = 1/24 hr−1, has also
been rescaled from daily rate in Eftimie et al. [3]. The half-saturation constant of the tumor-
specific immune cells that maintains half the maximum killing rate, hT = 40 cells, has been
taken from [3].

Infected normal cells. The death rate of infected normal cells, λN = 1/24 cells hr−1, is an
ad hoc value and has been chosen to conform with plausible biological outcomes. The rationale
for this parameter value was based on the fact that the average time for an infected cell to
undergo lysis is one day [2, 4, 5]. Similarly, the lysis rate of the infected normal cells by virus-
specific immune cells, γV = 1/24 cells hr−1 is also an ad hoc value. This value is chosen based
on the reasoning that the virus-specific immune cells do not distinguish between normal or tu-
mor cells because they are recruited in response to viral antigens expressed by infected cells [6,7].

Infected tumor cells. Similar to normal cells, the death rate of infected tumor cells due to
VSV lysis, λT = 1/24 cells hr−1, has been rescaled from daily rate in Eftimie et al. [3].

Oncolytic virus. The burst size of VSV from lysed infected tumor cells, bT = 1350, is taken
from [1]. For normal cells, we estimate that the oncolytic vesicular stomatitis virus (VSV) yields
the burst size of bN = 1000. This value was chosen based on the fact that VSV infection in
normal cells is usually hampered by the presence of the interferon (IFN-β or −α) [8]. Hence
we chose bN ≤ bT since tumor cells are known to acquire deficiencies in antiviral inhibitory
mechanisms [9, 10]. The clearance of the free virus particle by tumor-specific immune cells,
ω = 2.5× 10−2 hr−1 was taken from [2,11].

Tumor-specific immune cells. The hourly proliferation rate of tumor-specific immune cells
in response to tumor antigens, pT = 0.0375/24 hr−1, was taken and rescaled from the daily
rate in de Pillis et al. [12]. Assuming that the tumor-specific immune cells (i.e., tumor-specific
CD8+ T cells) have a half-life of 77 days as shown in [13], we estimate the hourly death rate of

the tumor-specific immune cells, δT , to be δT = ln(2)
(77×24) ≈ 3.75× 10−4 hr−1.

Virus-specific immune cells. We chose the ad hoc value of the proliferation rate of virus-
specific immune cells in response to VSV antigens, pV = 0.025 hr−1, since it is the lower bound
of the daily interval rate of the virus-specific immune cell proliferation rate shown by Eftimie et
al. [3]. We tentatively chose this lower bound value because, during viral propagation within the
infected cells, we assume that the immune response against the infected cells would be mainly
driven by debris of infected cells since VSV has fast replication cycle [14]. Finally, the hourly
death rate of the virus-specific immune cells, δV = 0.133/24 ≈ 5.54 × 10−3 hr−1 was rescaled
from daily rate in Eftimie et al. [3].

Model Basic Reproductive Number

A basic reproductive number is defined as the average number of new infections generated
by one infected cell, via cell lysis, during virotherapy in a completely susceptible cell popula-
tion [15]. In general, if R0 > 1, then, on average, the number of new infections resulting from
one infected cell is greater than one. Thus, viral infections will persist in both normal and
tumor cell populations. If R0 < 1, then, on average, the number of new infections generated
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by one infected cell in virotherapy is less than one. This implies that the viral infections will
eventually disappear from the cell populations. Here, we provide a detailed description of the
calculation of the basic reproductive number of the model. We use the next generation matrix
approach [15,16].

Proposition 1. The basic reproductive number of model is given by

R0 = R0N +R0T

where

i. R0N := bNβNNS
ω , represents the basic reproductive number of the virus when introduced into

a population of normal cells only

ii. R0T := (YT+hT )bT βTλTTS
((YT+hT )λT+YT γT )ω , represents the basic reproductive number of the virus when intro-

duced into a population of cancer cells only.

Proof. By formally applying the next generation method, we determine the threshold parameter
R0 at a virus free equilibrium point ENT := (NS , 0, TS , 0, 0, 0, YT ) . After identifying the vectors
of new infections and that of other transfers, we calculate the Jacobian matrices evaluated at
the virus free equilibrium ENT , and obtain

M =

 0 0 βNNS

0 0 βTTS
0 0 0


N =

 γV YV + λN 0 0

0 γV YV + λT + γTYT
hY +YT

0

−bNλN −bTλT ω


The spectral radius of the matrix MN−1 is given by

R0 = R0N +R0T

where

R0N :=
bNβNNS

ω
, and R0T :=

(YT + hT ) bTβTλTTS
((YT + hT )λT + YTγT )ω

.

Brief guidelines for R0 analysis. We aim to find a threshold in which the oncolytic viruses
that can exploit both normal and tumor cells, such as vesicular stomatitis virus (VSV), can
infect normal cells without much toxicity on normal cell population. The major goal of every
oncolytic virus is to infect and lyse as many tumor cells as possible without much toxicity on
the host normal tissue. The focus of our model analysis is centred around the basic reproduc-
tive number of the model. Numerical simulations, in conjunction with the analysis of the basic
reproductive numbers, aim to shed light on design and use of oncolytic viruses that are not
100% tumor-specific. In particular, we seek for R0N such that

R0N +R0T ' 1 (but) < 1.
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Note that if, based on the value of R0N ,

R0N ' 0 the virus cannot infect normal cells

or � 1 (the virus is too toxic on normal cells, hence not admirable.)

More importantly, R0N should satisfy the following conditions:

R0N = α̃R0T , α̃� 1, where α is a small proportionality constant,

R0N = α(1−R0T ), where α is a constant fraction.

And we also need that

α̃ =
αR0T

1−R0T
, and R0T < 1.

With these guidelines on R0, we investigate how the evolution of the oncolytic virus influ-
ences the treatment dynamics.

Stability analysis of the virus free steady states

Proposition 2. The virus free equilibrium points EN and ET are always unstable, while ENT
is locally asymptotically stable if and only if R0 < 1.

Proof. The stability of ENT is determined by the roots of following equation

(δv + z) (zKN −KNrN + 2NSrN )
(
P2z

2 + P1z + P0

) (
Q3z

3 +Q2z
2 +Q1z +Q0

)
= 0 (1)

where

Q3 : = YT + hT

Q2 : = (YT + hT )λN + (YT + hT )ω + (YT + hT )λT + YTγT

Q1 : = ((YT + hT )ω + (−YT − hT ) bNβNNS + (YT + hT )λT + YTγT )λN

+ ((YT + hT )λT + YTγT )ω + (−YT − hT ) bTβTλTTS

Q0 : = (((YT + hT )λT + YTγT )ω + ((−YT − hT )λT − YTγT )) bNβNλNNS

+ (−YT − hT ) bTβTλNλTTS

and

P2 =
(
KT δT

2TS
2 + 2KT δT

2hTTS +KT δT
2hT

2
)
hY

2

+
(
2KTTS

2δT pT + 2KTTSδThT pT
)
hY +KTTS

2pT
2

P1 = P13T
3
S + P12T

2
S + P11TS + P10

P0 = P03T
3
S + P02T

2
S + P01TS + P00
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with

P13 = 2ξ2rT = 2ξa0, ξ = hY δT + pT
P12 = ξ [(−rT + δT + γT )KT ξ + (4hT rT −KTγT )hY δT ]

= ξ [b0 + δT (KT ξ + 3hT rThY )]
P11 = δThThY [(2δT + γT − 2rT )KT ξ + (2hT rT −KTγT )hY δT ]

= δThThY [2b0 + (2δT − γT )KT ξ +KTγThY δT ]
P10 = δT

3hT
2hY

2 + δThThY c0

(2)

and

P03 : = 2δT rT ξ
2

P02 : = δT ξ [(γT − rT ) ξKT + (4hT rT −KTγT )hY δT ]

P01 : = 2δT
2hThY [(γT − rT ) ξKT + (hT rT −KTγT )hY δT ]

P00 : = −KT δT
3hT

2hY
2rT .

Stability of ET :
At the virus free and tumor endemic equilibrium point, ET , we have NS = 0 reducing the term
(zKN −KNrN + 2NSrN ) in the characteristic equation (1) to (z − rN )KN which has rN > 0 as
a root. Hence ET is unstable, implying that the tumor would persists growing uncontrollably.
Stability of EN :
At the virus-and-tumor free equilibrium, EN , we have TS = 0 and NS = KN reducing the term(
P2z

2 + P1z + P0

)
in the characteristic equation (1) to KT δ

2
Th

2
Th

2
Y (z + δT ) (z − rT ) which has

a positive root rT . Therefore, EN is unstable. This condition means that normal cells are able
to grow at an appreciable level in the absence of the tumor and virus. This result tend to
highlight the significance of the ability of normal cells in continuing to maintain normal cell
homeostasis in the absence of cancerous cells [17]. Note also that due to the choice of mass
action infection kinetics in our model, viral replication does not affect the stability of this tumor
free equilibrium.
Stability of ENT :
At the virus free equilibrium with both tumor and normal cells, ENT , we can see that P2 is
always positive. Let us show that P1 and P0 are positive.

P1 = 2ξa0T
3
S + ξ [b0 + δT (KT ξ + 3hT rThY )]T 2

S

+ δThThY [2b0 + (2δT − γT )KT ξ +KTγThY δT ]TS

+ δT
3hT

2hY
2 + δThThY c0.

Using a0T
2
S + b0TS = −c0 = KT δThThY rT , we obtain

P1 = ξa0T
3
S + ξKT δThThY rTTS +

(
KT δT ξ

2 + 3hThY δTa0
)
T 2
S

+ δThThY [2b0 + (2δT − γT )KT ξ +KTγThY δT ]TS

+ δT
3hT

2hY
2 + δThThY c0

= ξa0T
3
S +

(
KT δT ξ

2 + hThY δTa0
)
T 2
S + 2hThY δTa0T

2
S

+ 2δThThY b0TS + δThThYKT [(2δT − γT ) ξ + γThY δT + ξrT ]TS

+ δT
3hT

2hY
2 − δThThY c0.
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Furthermore, since 2hThY δTa0T
2
S + 2δThThY b0TS = −2δThThY c0, then

P1 = ξa0T
3
S +

(
KT δT ξ

2 + hThY δTa0
)
T 2
S − 3δThThY c0

+ δThThYKT ((2δT + rT − γT ) ξ + γThY δT )TS

+ δT
3hT

2hY
2.

Moreover, by using b0 = hThY rT δT +KT (ξ (γT − rT )− hY γT δT ) , we obtain

P1 = ξa0T
3
S +

(
KT δT ξ

2 + hThY δTa0
)
T 2
S − 3δThThY c0

+ δThThY (2δT ξKT + hThY rT δT − b0)TS
+ δT

3hT
2hY

2

= ξa0T
3
S +

(
KT δT ξ

2 + 2hThY δTa0
)
T 2
S − 2δThThY c0

− δThThY c0 − hThY δTa0T 2
S

− δThThY b0TS + δThThY (2δT ξKT + hThY rT δT )TS

+ δT
3hT

2hY
2.

Hence

P1 = ξa0T
3
S +

(
KT δT ξ

2 + 2hThY δTa0
)
T 2
S − 2δThThY c0

+ δThThY (2δT ξKT + hThY rT δT )TS + δT
3hT

2hY
2 > 0.

We show next that P0 > 0,

P0 = 2δT ξa0T
3
S + δT ξ [(γT − rT ) ξKT + (4hT rT −KTγT )hY δT ]T 2

S

+ 2δT
2hThY [(γT − rT ) ξKT + (hT rT −KTγT )hY δT ]TS

−KT δT
3hT

2hY
2rT .

Since (γT − rT )KT ξ + (hT rT −KTγT )hY δT = b0, then

ξ [(γT − rT ) ξKT + (4hT rT −KTγT )hY δT ]

= ξb0 + 3ξhT rThY δT

= ξb0 + 3hThY δTa0,

implying that

P0 = δT ξa0T
3
S + δT ξTS

(
a0T

3
S + b0TS

)
+ 3hThY δ

2
Ta0T

2
S

+ 2δT
2hThY b0TS −KT δT

3hT
2hY

2rT .

Therefore,

P0 > 2hThY δ
2
Ta0T

2
S + 2δT

2hThY b0TS − 2KT δT
3hT

2hY
2rT

= 2hThY δ
2
T

(
a0T

2
S + b0TS + c0

)
= 0.
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Thus P := P2z
2 + P1z + P0 > 0.

Concerning the polynomials Q0, Q1 and Q2, we have Q2 is always positive. Moreover,

Q1 : = ((YT + hT )ω (1−R0N ) + (YT + hT )λT + YTγT )λN

+ ((YT + hT )λT + YTγT )ω (1−R0T )

Q0 : = (((YT + hT )λT + YTγT )ω (1− (R0N +R0T )))λN .

Therefore,

i. If R0 := R0N + R0T > 1, then Q0 < 0 implying that the quadratic polynomial Q :=
Q2z

2 +Q1z +Q0 has at least one root with positive real parts.

ii. If R0 < 1, then Q0 > 0. Moreover, we have R0N < 1 and R0T < 1 which implies that Q1 is
also positive. Since Q2 > 0, then by the Routh-Hurwitz criterion [18, 19], the quadratic
polynomial Q := Q2z

2+Q1z+Q0 does not have any roots with positive real parts. Hence,
ENT is locally asymptotically stable if and only if R0 < 1, implying that the transient
infections on normal and tumor cell populations would naturally be eliminated.

MATLAB Syntax for the ODE system counterpart of the model

function Virotherapy_Sing_Mult_Dose_ODE

% This code is for the model dealing with generalist oncolytic viruses.

% The model consists of a system of ODEs which are solved using the

% solver ode23s.

% The model investigates two main scenarios: 1. One single viral does

% administred at various different times and 2. multiple viral dose

% given at successive time.

% Event functions are also used to decide when to give the following

% viral dose. These culd be based on: 1. The viral load reaching a certain

% minimum (V(t) - 1e-6=0 for example), the rate of decline of tumor

% cells is too slow (d(T_S+T_I)/dt + 1e-3 = 0 for example), or simply the

% time since the last dose is too large (t-tDose(j)=1 week for

% example).

% The code creates folders for the plots whose name contain the current

% dates, so we keep track of all the plots. It also creat a diray for

% the model’s results and discussion (if any), again, with dated names.

global r_N K_N beta_N r_T K_T beta_T gamma_T h_T h_Y lambda_N gamma_V Params0

global lambda_T b_T b_N omega p_V delta_V p_T delta_T tStart tEnd tSpan

global aa bb cc R0N R0T R0 tDose V0 x01 x0

beep off

clc; close all

set(0,’DefaultFigureWindowStyle’,’docked’)

set(0,’DefaultLineLineSmoothing’,’on’);
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set(groot,’DefaultFigureWindowStyle’,’docked’,...

’defaultLineLineWidth’,2,...

’defaultLineMarkerSize’,4,...

’defaultAxesFontSize’,18,...

’defaultAxesFontWeight’,’bold’,...

’defaultAxesFontName’,’Times New Roman’);

mFileWorkingDirectory=pwd;

mFileParentDirectory=mFileWorkingDirectory;

% This is to creat subfolders for the plots and results. The folders’

% names include the current date and time to avoid overwritting them

format shortg

clk = datestr(datetime(’now’),’dd-mmm-yy-HH’);

PlotsFolder=[’\ODE_PlotsDirectory-’,clk];

% This is to avoid "creating" a folder that was exists already

if ~exist(’ODE_PlotsDirectory’, ’dir’)

mkdir(mFileParentDirectory, PlotsFolder);

end

% Same here: The results folder name containes the current date.

ResultsFolder=[’\ODE_ResultsDirectory-’,clk];

if ~exist(’ODE_ResultsDirectory’, ’dir’)

mkdir(mFileParentDirectory, ResultsFolder);

end

% The code’s results go here. Anything that we would like to report

PlotsFullPath=[mFileParentDirectory,PlotsFolder];

ResultsFullPath=[mFileParentDirectory,ResultsFolder];

diary([ResultsFullPath,’\ODE_Results.txt’]);

Model parameters

% r_N = 0.00275;

% K_N = 1e11;

% r_T = 0.003;

% K_T = 1.47e12;

% beta_T = 5e-12;

% beta_N = 1e-16;

% gamma_T = 1/24;

% gamma_V=1/24;

% h_T = 40;

% h_Y = 40;

% lambda_N = 1/24;

% lambda_T = 1/24;

% b_T = 1350;
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% b_N=1e3;

% omega = 2.5e-2;

% p_V = 0.025;

% delta_V = 5.54e-3;

% p_T = 0.0375/24;

% delta_T = 3.74e-4;

% %%tau = 7;

Time span

tStart=0;

tEnd=400;

%tDose=[tStart,min(24,tEnd/4),min(48,tEnd/2),min(72,tEnd)];

tDose1=[tStart,24];

%tDose=[tStart,min(24,tEnd/8),min(48,tEnd/4),min(72,tEnd/2),min(96,tEnd)];

tDose=[tStart,min(24,tEnd/8),min(48,tEnd/4),min(72,tEnd/2),min(96,tEnd),...

min(120,tEnd),min(144,tEnd),min(168,tEnd),min(192,tEnd)];

tSpan = linspace(tStart,tEnd,1000);

Calculating the basic reproductive number: R0

aa=p_T*r_T+h_T*r_T*delta_T;

bb=K_T*p_T*gamma_T+h_T*h_Y*r_T*delta_T-K_T*h_Y*r_T*delta_T-K_T*p_T*r_T;

cc=-K_T*h_T*h_Y*r_T*delta_T;

T_S=(-bb+sqrt(bb^2-4*aa*cc))/(2*aa);

Y_T=p_T*T_S/(delta_T*(T_S+h_T));

R0N=(b_N*beta_N*K_N)/omega;

R0T=((b_T*beta_T*lambda_T*(h_T+Y_T)*T_S)/omega*((Y_T+h_T)*lambda_T + Y_T*gamma_T));

R0 = R0N + R0T;

The model equations (ODE)

function dxdt = ModelEquations(~,x,Params)

beta_N = Params(1);

gamma_V = Params(2);

b_N = Params(3);

xSN=x(1);

xST=x(2);

xIN=x(3);

xIT=x(4);

xV=x(5);

xYV=x(6);

xYT=x(7);

dxSNdt = r_N*xSN*(1-(xSN+xIN)/K_N) - beta_N*xSN*xV;

dxSTdt = r_T*xST*(1-(xST+xIT)/K_T) - beta_T*xST*xV - gamma_T*...

(xYT/(h_Y + xYT))*xST;

dxINdt = beta_N*xSN*xV - lambda_N*xIN - gamma_V*xYV*xIN;
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dxITdt= beta_T*xST*xV - lambda_T*xIT - gamma_T*(xYT/(h_Y + xYT))*...

xIT - gamma_V*xYV*xIT;

dxVdt = b_T*lambda_T*xIT + b_N*lambda_N*xIN - omega*xV;

dxYVdt = p_V*(xIT + xIN) - delta_V*xYV;

dxYTdt = p_T*((xST + xIT)/(h_T + xST + xIT)) - delta_T*xYT;

dxdt = [dxSNdt;dxSTdt;dxINdt;dxITdt;dxVdt;dxYVdt;dxYTdt];

end

Initial conditions

SN0 = K_N;

ST0 = 0.2*T_S;

NI0 = 0;

TI0 = 0;

YT0 = 0;

YV0 = 0;

x01 = [SN0;ST0;NI0;TI0;0;YV0;YT0];

x0 = NaN(7,length(tDose));

%X0 = NaN(7,length(tDose1)); % without viral dose

X0 = x01; % without viral dose

Model Solution

function Solutions = ModelSolution(t0,x0,Params)

%options = ddeset(’Events’,@(t,x,y) myEvents(t,x,y,Params),’RelTol’,1e-01,...

%’AbsTol’,1e-01);

options0 = odeset(’RelTol’,1e-03,’AbsTol’,1e-03);

Solutions = ode23s(@(t,x) ModelEquations(t,x,Params),[t0 tEnd],x0,options0);

end

Model Solution without viral dose

function Solutions1 = ModelSolution1(t0,X0,Params)

%options = ddeset(’Events’,@(t,x,y) myEvents(t,x,y,Params),’RelTol’,1e-01,...

%’AbsTol’,1e-01);

options0 = odeset(’RelTol’,1e-03,’AbsTol’,1e-03);

Solutions1 = ode23s(@(t,x) ModelEquations(t,x,Params),[t0 tEnd],X0,options0);

end

Evaluating the Model Solutions.
Parameters chosen for our simulations

Params0 = [beta_N,gamma_V,b_N];

% Viral injections used in our simulations. Changes these if the doses

% are not equal
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V0=1e6*ones(size(tDose));

%V0=2e15*ones(size(tDose));

%Setting up empty arrays for the model solutions

Sol =NaN(1,length(tDose),7,length(tDose(1):tEnd));

SN = NaN(1,length(tDose),length(tDose(1):tEnd));

ST = NaN(1,length(tDose),length(tDose(1):tEnd));

IN = NaN(1,length(tDose),length(tDose(1):tEnd));

IT = NaN(1,length(tDose),length(tDose(1):tEnd));

V = NaN(1,length(tDose),length(tDose(1):tEnd));

YV = NaN(1,length(tDose),length(tDose(1):tEnd));

YT = NaN(1,length(tDose),length(tDose(1):tEnd));

Model simulations.
Two scenarios are considered in these simulations: Scenario k=1 corresponds to a single viral

dose administered at different times. while scenario k=2 represents successive viral injections
administered according to the event function

for k=1:2

for j=1:length(tDose)

% Setting up the initial condition after each dose

if j==1

x0(:,j)=x01;

else

if k == 1

% Here the initial condition for tDose(j) is equal to the

% solution evaluated at tDose(j-1) Plus an additional viral

% dose %

x0(:,j) = deval (ModelSolution(tDose(j-1),x0(:,j-1),Params0),...

tDose(j)) + [0;0;0;0;V0(j);0;0];

else

% Here the initial condition for tDose(j) is equal to the

% initial condition x0 plus an additional viral dose

x0(:,j) = deval (ModelSolution(tDose(1),x0(:,1),Params0),tDose(j))...

+ [0;0;0;0;V0(j);0;0];

end

end

%Evaluating the solutions for each dosing regim (tDoses) and each scenario

Sol(k,j,:,tDose(j)+1:tEnd+1) = deval (ModelSolution(tDose(j),x0(:,j),...

Params0),tDose(j):tEnd);

SN(k,j,:) = Sol(k,j,1,:);

ST(k,j,:) = Sol(k,j,2,:);

IN(k,j,:) = Sol(k,j,3,:);

IT(k,j,:) = Sol(k,j,4,:);

V(k,j,:) = Sol(k,j,5,:);
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YV(k,j,:) = Sol(k,j,6,:);

YT(k,j,:) = Sol(k,j,7,:);

end

end

Events

function [value,isterminal,direction] = myEvents(t,x,y,Params)

DerivSol=ModelEquations(t,x,y,Params);

value = [DerivSol(2) + 1e-01,DerivSol(4) + 1e-01];

isterminal = [0,0];

direction = [-1,-1];

end

Plotting.
Changing directory for saving the plots

cd(PlotsFullPath);

% Line Styles

Styles={’-’,’--’,’-.’,’:’,’-’,’--’,’-.’,’:’,’-’,’--’,’-.’,’:’};

% Plots

for k=1:2

% Figures’ titles

ttle=[’R_{0N} = ’, num2str(R0N,’%10.0e\n’),’, R_{0T} = ’,...

num2str(R0T,’%10.0e\n’),’, Scenario = ’, num2str(k)];

% Figures’ legends

if k == 1

MultiDose=repmat(’another one at t = ’,size(tDose(3:end),2),1);

if length(tDose)==1

lgd=’Without virotherapy’;

elseif length(tDose)==2

lgd=[’Without virotherapy’,’A viral dose at t = ’,num2str(tDose(2))]’;

else

lgd=[’Without virotherapy’,[’A viral dose at t = ...

’,num2str(tDose(2))],cellstr([MultiDose,num2str(tDose(3:end)’)])’]’;

end

elseif k == 2

RepDose=repmat(’or at t = ’,size(tDose(3:end),2),1);

if length(tDose)==1

lgd=’Without virotherapy’;

elseif length(tDose)==2

lgd=[’Without virotherapy’,’a single viral dose at t = ’,...

num2str(tDose(2))]’;

else

lgd=[’Without virotherapy’,[’a single viral dose, either at t = ...
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’,num2str(tDose(2))],cellstr([RepDose,num2str(tDose(3:end)’)])’]’;

end

end

Returning to the working directory

cd(mFileWorkingDirectory);

end
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